
Master Thesis:

RNA Nanopore Sequencing:

tracking down the m6A

modification

to obtain the academic degree

Master of Science (M. Sc.) in Bioinformatics

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

Fakultät für Mathematik und Informatik

RNA Bioinformatics/High-Throughput Analysis

Written by:

Jannes Spangenberg

born on 25.07.1997 in Neubrandenburg

Supervised by:

Sebastian Krautwurst, Christian Höner zu Siederdissen and Manja Marz

September 3, 2021

Zusammenfassung

Zusammenfassung

Studien zeigen, dass es möglich ist Basenmodifikationen in dem Oxford Nanopore

Technologies Sequenzierungssignals von DNA und RNA zu detektieren. Das Signal

um eine modifizierte Base weist eine Verschiebung gegenüber der unmodifizierten

Variante auf. Genaue und verlässliche Tools zur Vorhersage einer RNA Modifika-

tion sind noch sehr rar und funktionieren noch nicht gut oder nur eingeschränkt

gut. In dieser Masterarbeit versuche ich aus dem Nanopore Signal von RNA in vitro

Transkriptionsdaten die N6-Methyladenosin (m6A) Modifikation von einer normalen

Adenosin Base zu unterscheiden. Dazu verwende ich die Skriptsprache Python,

eigens geschriebene Skripte und adaptierte Skripte meiner Betreuer. Für die Vorher-

sage der m6A Modifikation aus dem Signal verwende ich tiefe neuronale Netze,

welche eine Methode des maschinellen Lernens darstellen. Das Signal verarbeite

ich in drei verschiedenen Formen für die neuronalen Netze. Eine Form ist das rohe

Sensorsignal, ein andere das transformierte Pikoampere (pA) Signal und die letzte

das normalisierte pA Signal. Desweiteren analysiere ich die Basensegmentierung

eines Nanopore Signals an und vergleiche dabei die Segmentierungs- und Resquig-

glingtools Taiyaki und Nanopolish eventalign. Hierfür visualisiere ich die un-

modifizierten und modifizierten Signale bestimmter Motive aus den Datensätzen für

das Trainieren und Evaluieren meiner neuronalen Netze. Zum Schluss vergleiche

ich die neuronalen Netze untereinander auf ihre Fähigkeit die m6A Modifikation aus

den in vitro Transkriptionsdaten vorherzusagen.

Abstract

Abstract

Studies show that it is possible to detect base modifications in the Oxford Nanopore

Technologies sequencing signal from DNA and RNA. The signal around a modified

base presents a shift compared to the unmodified variant. Accurate and reliable

tools for predicting an RNA modification are still rare and do not perform very

well or only to a limited extent. In this master thesis, I aim to distinguish the

N6-methyladenosine (m6A) modification from a regular adenosine base from the

Nanopore signal of RNA in vitro transcription data. For this, I use the scripting

language Python, specially written scripts, and adapted scripts from my supervi-

sors. For the prediction of the m6A modification from the signal, I use deep neural

networks, which are a method from machine learning. I process the signal in three

different forms for the neural networks. One form is the raw sensor signal, another is

the transformed pico ampere signal, and the last is the normalized picoampere sig-

nal. Furthermore, I look at the base segmentation of a Nanopore signal and compare

the segmentation and resquiggling tools Taiyaki and Nanopolish eventalign. For

this, I visualize the unmodified and modified signals of certain motives from the data

sets for the training and evaluation of my neural networks. Finally, I compare the

neural networks with each other for their ability to predict the m6A modification

from the in vitro transcription data.

Contents

1 Introduction . 9

1.1 Oxford Nanopore Technologies and modifications 9

1.2 Existing methods . 10

1.3 Deep neural networks . 12

1.4 Data collection . 14

2 Materials . 15

2.1 Resquiggler and segmentation 15

2.1.1 Taiyaki . 16

2.1.2 Nanopolish eventalign 17

2.2 Model input format . 18

2.3 HDF5 format . 21

3 Methods . 22

3.1 Signal interpolation . 22

3.2 Python scripts . 25

3.3 Model architecture . 27

3.3.1 Transformer layer stacks 28

3.3.2 Linear layer stacks 31

3.3.3 The network structure 32

3.3.4 Training strategy . 34

3.4 Sample processing . 35

4 Results . 36

4.1 The segmentation is the foundation 36

4.2 Model performances . 44

4.2.1 High accuracy in training 45

4.2.2 The models yield promising evaluation results 48

5 Discussion . 51

5.1 The data problem . 51

5.2 Preprocessing of the signal . 52

5.3 More features for the prediction 53

5.4 More exploration of the data 54

6 Conclusion . 55

Appendix . I

Bibliography . IV

Lists

List of Figures

1 The nanopore . 9

2 The signal shift . 10

3 The neuron model . 12

4 Deep neural networks . 14

5 From signal to input . 20

6 The HDF5 data structure . 21

7 Linear interpolation: signal inflation 24

8 Linear interpolation: signal shrinking 24

9 Activation functions . 28

10 Transformer encoder architecture . 30

11 Linear layer architecture . 31

12 Model architecture . 32

13 GGACT squiggle - Nanopolish EpiNano normalized pA 37

14 GGACT squiggle - Nanopolish EpiNano unnormalized pA 38

15 GGACT squiggle - nanopolish EpiNano raw 39

16 GGACT squiggle - Taiyaki EpiNano raw 41

17 GGACT squiggle - Nanopolish Modbuster raw 42

18 Testset accuracy . 46

19 Testset loss per sample . 47

20 Precision-Recall curves . 48

21 Receiver operating characteristic (ROC) curve 50

S1 GGACT squiggle - Taiyaki Epinano normalized II

S2 GGACT squiggle - Taiyaki Modbuster normalized II

S3 GGACT squiggle - Nanopolish Modbuster normalized III

Lists

List of Tables

1 Used tools and versions . 15

2 The datasets . 16

3 Model hyperparameters . 33

4 Model accuracy on the Modbuster evaluationset 45

List of Algorithms

1 Linear interpolation (pythonlike pseudocode) 23

Abbreviations

Abbreviations

A adenine

AUC area under the ROC curve

CLIP cross-linking-immunoprecipitation

C cytosine

DNA desoxyribonucleic acid

DNN deep neural network

FPR false positive rate

GELU gaussian error linear unit

hm5C 5-hydroxymethylcytidine

HDF5 Hierarchical Data Format version 5

I inosine

IVT in vitro transcription

LSTM long short-term memory

LReLU leaky rectified linear unit

m1A N1-methyladenosine

m5C 5-methylcytidine

m6A N6-methyladenosine

m6Am N6,2’O-dimethyladenosine

NGS next-generation sequencing technology

ONT Oxford Nanopore Technologies

pA pico ampere

Ψ pseudouridine

ReLU rectified linear unit

RNA ribonucleic acid

ROC receiver operating characteristic

TPR true positive rate

U uracil

1. Introduction

1 Introduction

1.1 Oxford Nanopore Technologies and modifications

The next-generation sequencing technology (NGS) from Oxford Nanopore Tech-

nologies (ONT) makes it possible to sequence desoxyribonucleic acid (DNA) or

ribonucleic acid (RNA) directly. In Oxford Nanopore Sequencing, the DNA or

RNA strand is pulled through a pore in a membrane. A voltage is applied to this

membrane, and a sensor in the pore measures the electric current. The measured

current in the pore changes characteristically depending on the bases passing the

sensor due to the molecular structure of the DNA and RNA bases, which can be seen

in Figure 1. This opens up new opportunities to detect and predict base modifica-

tions, as modified bases have a different molecular structure. Therefore, they show

a shift in the measured current compared to their unmodified variant, which could

look like the signal in Figure 2. The measured current is an electrical signal, also

called the nanopore signal. A measured current represents a characteristic signal for

five nucleotides, as five bases pass the pores sensor, called a 5-mer or event.

The nanopore

pA

DNA/RNA

Motor Protein

Helicase

Pore

Time
0

ra
w

 s
e
n
so

r
v
a
lu

e

Membrane

Figure 1: The DNA/RNA is pulled through the pore with the help of the motor protein. A
current is applied to the membrane. The bases in the pore disrupt the electric
flow, and the sensor measures this disruption. This will result in the characteristic
nanopore signal.

The change of the signal between an unmodified 5-mer and a modified 5-mer can

9

1. Introduction

be used to detect modified DNA or RNA [8, 17, 21, 29, 31, 32]. Detecting base mod-

ifications is essential, as it can help understand diseases and develop new drugs

against lethal diseases, such as cancer. RNA base modifications regulate many

post-transcriptional gene expression steps such as degradation, translation, splic-

ing, localization, and primary microRNA processing [2, 3, 7, 25, 27, 38, 42, 43]. They

influence the cellular processes, cancer risk, and the cell fate [30,37,44] and play a sig-

nificant role in the early development of humans [5,9,27,39,41,44,45]. A few of these

modifications are N6-methyladenosine (m6A), N1-methyladenosine (m1A), N6,2’O-

dimethyladenosine (m6Am), inosine (I), 5-methylcytidine (m5C), 5-hydroxymethyl-

cytidine (hm5C) and pseudouridine (Ψ), but much more are known today [15,27].

The signal shift

Time
0

C A G U AG G C U UA A ACA

ra
w

 s
e
n
so

r
v
a
lu

e

m6A

Figure 2: The black line represents a theoretical signal of unmodified bases, while the red part
represents a theoretical possible signal shift, created by the m6A modification.

1.2 Existing methods

There are already some approaches and studies to detect DNA modifications using

the signal from ONT sequencing [8, 17, 21, 29, 31, 32]. However, also other methods

to map specific RNA modifications exist already. For m6A and m6Am a method

called cross-linking-immunoprecipitation (CLIP) can be used to map these modifi-

cations transcriptome wide [19]. CLIP uses antibodies that bind to m6A sites [19].

10

1. Introduction

Using ultraviolet light-induced antibody-RNA cross-linking and reverse transcrip-

tion, specific mutation signatures are induced [19]. Another method is DART-seq,

which is an antibody-free method to detect the m6A modification [24]. It induces

cytosine (C) to uracil (U) deamination at Cs adjacent to m6A bases, which can be

identified using RNA-seq [24].

However, tools to detect and predict RNA modifications within the nanopore signal

are still rare. Existing RNA modification prediction tools use read aggregated in-

formation such as error rates [20], or Gaussian mixture models on signal aggregated

information such as the normalized mean or standard deviation of the nanopore

signal [27].

The m6A is often found in specific motifs, to which methyltransferase complexes can

bind [6,18,46]. One reported motif is the “DRACH“ motif, which methyltransferases

can recognize, and demethylases [22].

In the project work [33], I tried to predict the m6A modification from a nanopore

signal, using a deep neural network (DNN) with signal aggregated features like

mean, standard deviation, median, median-absolute-deviation, skew, and kurtosis

[33]. These features were extracted from different signal types, such as the raw sensor

value, the unnormalized pico ampere (pA) value, and the normalized pA value [33].

In this master thesis, I aim to look much deeper into the raw nanopore signal to

understand what happens with the signal when an unmodified 5-mer passes the

pore compared to a modified 5-mer with the same bases. Furthermore, I use a DNN

which takes the nanopore signal representing an odd number of bases, where the

middle base represented by the signal is either modified or unmodified, as input. If

the sequence is modified, m6A is the middle base. If the sequence is unmodified, A

is the middle base. The network is then trained to predict the modification status

of the sequence.

11

1. Introduction

1.3 Deep neural networks

DNNs are a subset of the machine learning area. Neurons and the human brain

inspire their construction and functionality. Artificial neural networks are built

from layers of artificial neurons. These artificial neurons model the brain’s neurons

and take one or more values, typically from other neurons, as input. The input

values are combined and processed by the neuron using weights, which can be seen

in Figure 3. These weights are adjusted while training the network. The neuron’s

output is given to other neurons as input or is interpreted as the output of the whole

network.

The neuron model

x0

x1

x2

xN

wi,0

wi,1

wi,2

wi,N

oi

Figure 3: This picture shows a simple neuron model. Every neuron i gets the input val-
ues x0, x1, x2, . . . , xN over all inputs N + 1 and sums them up using the weights
wi,0,wi,1,wi,2, . . . ,wi,N together with a bias term ϑi. The sum ni is given to an ac-
tivation function, here shown as a sigmoid function. The output oi = activation(ni)
is given to other neurons to process or handled as an output of the whole model.

Neurons are stacked together to form layers. Layers are divided into three different

types. The first one is the input layer, shown in red in Figure 4. Neurons in this

layer receive their input from the model’s input samples, also called features. The

output of the input layer can be sent to a hidden layer, which is shown in blue in

Figure 4. One or more hidden layers can appear in a neural network. In this layer

type, neurons receive information from other neurons by the previous layer. The

information or input is processed as shown in Fig 3 and given to neurons of the

next layer. The last layer type is the output layer, shown in green in Figure 4. This

12

1. Introduction

layer’s neurons act like neurons of the hidden layers, but their output is not sent to

other neurons. Their output is interpreted as the output of the whole neural net-

work, which can be of different forms like a binary classification, a multiple-choice

classification, a numeric prediction, and others.

In training, the network learns to yield the correct output. Training is an opti-

mization task on the neuronal weights of the network, typically performed using

gradient descent with automatic differentiation [4]. In the case of neural networks,

this automatic differentiation is called backpropagation [12]. This algorithm per-

forms a gradient descent of the whole network, in which the weights of all neurons

are updated with a learning rate to get closer to the correct output for one or more

inputs. This is accomplished with a gradient or loss of the output layer neurons,

which is determined using a distance or error metric in the form of a loss function.

The gradients of previous neurons that contribute to the current neuron’s output

and, therefore, the resulting gradient are calculated recursively. This is repeated for

every neuron’s gradient from the output to the network’s input layer, hence back-

propagated through the network. The gradient of the neurons originates from the

derivative of the respective activation function. The learning rate is a scale for the

weight adjustment and is used to prevent over-fitting. The update or backpropaga-

tion is executed for every batch the neural network sees.

13

1. Introduction

Deep neural networks

Input Layer Hidden Layers Output Layer

Figure 4: A neural network is built from neuron layers. There are three different types of
layers. The first one, shown in red, is called the input layer. After the input layer,
zero or more hidden layers, here shown in blue, can be stacked after another. The
last layer is called the output layer, shown in green.

1.4 Data collection

One major issue with training a neural network to call methylation is the data

collection. In the best case, I have in vivo datasets with a perfect ground-truth to

train the neural networks and validate their predictions. Such an in vivo dataset with

a good ground-truth validation is lacking. That is why I use an in vitro transcription

(IVT) dataset by Novoa et al. (EpiNano) [20] for training and an IVT dataset of

Marz et al. (Modbuster) [33] to validate the models. This way, I can check if the

model can transfer the learned aspects from one in vitro dataset to another. Within

these datasets, reads are either fully methylated with m6A or not methylated at all.

In vivo a read is not fully methylated, not even fully modified. However, this way,

much data can be provided to train models to predict a modification, and it can be

tested whether a modification can be predicted from the signal.

14

2. Materials

2 Materials

Table 1: Conda was used to build enviroments with the necessary packages for the Python

scripts. Taiyaki and Nanopolish are segmentation and resquiggling tools. Numpy

and PyTorch are used within the Python scripts to analyze and process the data.

Tool Version

PyTorch [26] 1.9.0

Python [35] 3.8.10

Conda [1] 4.10.3

Numpy [11] 1.21.0

Taiyaki 5.0.0

Nanopolish 0.13.2

I constructed multiple DNN models for the m6A prediction to handle different

datasets and compare them by their accuracy. As mentioned in the introduction,

the IVT EpiNano dataset [20] is used to train these models and the IVT Modbuster

dataset for validation. The EpiNano dataset [20] was sequenced using the ONT plat-

form GridION, and the Modbuster dataset was sequenced using the MinION Mk1B.

Both datasets contain synthesized RNA reads that are either fully m6A methylated

or not methylated at all.

2.1 Resquiggler and segmentation

The first step to prepare the datasets for a neural network is to resquiggle the

nanopore signal of every read with the help of a reference sequence to correct the

basecalls. Resquiggling means that the nanopore signal and its basecalls are mapped

to a reference sequence to correct basecalling errors and adjust the base signal seg-

mentation. Reads, whose nanopore signal could not or only partly be mapped to the

reference sequence, are not or only in parts included in the tool’s output. Further-

more, the signal base segmentation is adjusted. If the signal base segmentation is

incorrect, signal values from one base can protrude into the surrounding base signals.

15

2. Materials

This could lead to a more challenging prediction problem if the signal boundaries

are not clear.

Table 2: The datasets were preprocessed by S. Krautwurst with the mentioned resquiggling
tools Taiyaki and Nanopolish. The output of these tools is processed so that
every base in a sample has the same signal length. After that, the datasets get
balanced, resulting in the same amount of modified (m6A) and unmodified (can)
samples within the datasets. Due to the exclution parts or whole reads in the output
of Taiyaki and Nanopolish, the number of samples for the same input data differs.

Datasets Resquiggler m6A can

Novoa et. al. (EpiNano) [20] Taiyaki 3’302’753 3’302’753

Marz et. al. (Modbuster) Taiyaki 881’010 881’010

Novoa et. al. (EpiNano) [20] Nanopolish eventalign 2’444’399 2’444’399

Marz et. al. (Modbuster) Nanopolish eventalign 697’038 697’038

ONT Taiyaki1 and Nanopolish eventalign2 are both available on GitHub.

2.1.1 Taiyaki

Taiyaki is a tool to prepare training datasets for basecalling ONT reads. The output

of Taiyaki contains reads that could be mapped to the given reference together with

a segmentation of the base signals, normalization, and transformation parameters.

To calculate the pico ampere (pA) current from the raw signal values, called Dacs

in Taiyaki, the parameters offset, range, and digitization are used. The Taiyaki

GitHub page provides the equation

current = (Dacs + offset) · range

digitization

for this transformation. It is possible to normalize this current per read with the

provided shift and scale values per read by Taiyaki.

norm current =
current− read shift

read scale

1https://www.github.com/nanoporetech/taiyaki
2https://www.github.com/jts/nanopolish

16

2. Materials

These three different types of nanopore signals can be used as the input for the DNN

model. Taiyakis segmentation contains signals with lengths being a multiple of ten,

with the smallest being ten. This resolution is a hardcoded parameter of Taiyaki,

which is unfavorable because the original base signals have different lengths that are

not just multiples of ten.

2.1.2 Nanopolish eventalign

Nanopolish is a software package to analyze the signal of ONT sequencing data.

The tool uses a signal distribution model for each possible 5-mer at the pores

sensor. These 1024 signal models contain a mean pA and a standard deviation.

With the help of these distributions, the tool Nanopolish eventalign provides an-

other segmentation than Taiyaki. Some read parts or 5-mer events of Nanopolish

eventalign cannot be assigned to a model, which can be seen in the output file of

the tool. Furthermore, the tool provides multiple non-overlapping segments for a

single 5-mer event. These segments get concatenated. A chunk of five base signal

segments is used as a sample, if

1. no 5-mer event is missing for the chunk,

2. the middle base of the chunk is the canonical or modified version of the base

of interest (A).

If some segments provided by Nanopolish eventalign could not be assigned to a

5-mer event, hence its distribution model, then these segments are marked within

the output file. These segments get discarded if they appear at the start or end

of an event. For those, it is unclear to which 5-mer event they belong. Segments

within one 5-mer event that are not assigned are used, as the signal could contain

some spikes or outliers that the tool might not assign to the model distribution.

17

2. Materials

2.2 Model input format

The idea is to construct samples, called chunks, out of the nanopore signal for the

model input. To do this, I choose a chunk size of five nucleotides. As already

mentioned, five bases are measured at the sensor in the pore at the same time. This

means that a modified base influences the signal of four bases up and downstream

of itself, which can result in a signal shift as shown in Figure 2. The maximum

impact could be achieved by using a chunk size of nine bases. However, this could

be unfavorable, as the model might learn the sequence context or motifs instead

of using the base signal to predict the methylation status. Another way would

be to only take the signal of the modified base, hence a chunk of size one. In

this case, much helpful information from the surrounding base signals would be

discarded. A chunk size of five also matches the way the datasets were initially

constructed. The EpiNano dataset contains synthetic sequences that comprised

all possible 5-mers (with a median occurrence of 10) while minimizing the RNA

secondary structure [20]. A read in the dataset is either fully m6A methylated or

not methylated at all. The Modbuster dataset was constructed similarly. Here every

fifth base is an adenine (A) or m6A, and every possible 5-mer with an A or m6A

in the middle appears within the dataset of the modified and unmodified reads.

Nevertheless, the order of 5-mers is not random in the Modbuster dataset. Not

every possible 9-mer with an A in the middle is present, which means that in the

fully methylated reads, every base signal representing a C, G, or U is influenced by

two m6A methylations, which might not appear very often in vivo. That is why I

used the EpiNano dataset for training and the Modbuster dataset for validation.

Each base in a chunk or sample contains multiple features. The most prominent

feature is the base signal, Figure 5. This signal must be of the same size in every

base for every sample. In section 3.1, I explain how to accomplish this. The size

of this base signal will be called signal size, which describes how many signal data

points are used for every base in a sample. Additional features per base are the

reference bases, which get one-hot-encoded:

• A or m6A → [1, 0, 0, 0],

18

2. Materials

• C → [0, 1, 0, 0],

• G → [0, 0, 1, 0],

• U → [0, 0, 0, 1]

and the original base signal length extracted from the segmentation provided by the

tools Taiyaki or Nanopolish eventalign. The one-hot-encoding is a simple vector

encoding or representation for the bases.

Additionally, the signal can be processed in three different ways. As later shown in

section 2.1.1 I can provide the signal as:

• The raw sensor value describes the direct sensor value of the nanopore without

any transformation or normalization.

• The unnormalized pA value is the transformed raw value. With the help

of some parameters described in section 2.1.1, the raw sensor value can be

transformed into the pA unit.

• The read normalized pA value is also described in section 2.1.1. The pA values

are normalized using the whole read signal shift and scale values.

Usually, the normalization is useful to eliminate biases that could result from differ-

ent pores or different sequencing timepoints. But in this case, the raw sensor values

work best for the models when using IVT data. The read normalization kind of

wipes the signal shift of the modification within the fully methylated reads, as the

amount of modifications shifts the whole read signal mean. In those reads, the signal

mean and variance are heavily influenced by the modifications, which would in vivo

not be the case. In vivo reads are not fully methylated, not even fully modified.

Using the read mean and variance to normalize the read signal might reduce or even

remove the signal shift of the modified bases.

19

2. Materials

From signal to input

2. Interpolated base signals
to the same signal length

1. Take chunk with an A or m6A in the middle

3. Build input vectors

0

ra
w

 s
e
n
so

r
v
a
lu

e

Time

G G A C U

x0

x1

xn

x0

x1 xn

length

x0
x1
x2

xn

...

0
0

1
0

length

x0
x1
x2

xn

...

0
0

1
0

length

x0
x1
x2

xn

...

0
1

0
0

length

x0
x1
x2

xn

...

1
0

0
0

length

x0
x1
x2

xn

...

0
0

0
1

Time
0

C A G U AG G C U UA A ACA
ra

w
 s

e
n
so

r
v
a
lu

e

Figure 5: Samples for the network are extracted from the nanopore signal. The base signals are
interpolated to the same signal size and are used as an input feature (x1, x2, . . . , xn),
while the original signal length is stored as a separated feature. The reference bases
are embedded with an one-hot-encoding.

20

2. Materials

2.3 HDF5 format

The Hierarchical Data Format version 5 (HDF5) provides a data structure to store

big, complex, and heterogeneous data to train models [16]. It is an open-source file

format and uses a directory-like structure to store and access the data. HDF5 also

allows metadata storage to add descriptive information about single entries, data

subsets, or the whole dataset. Taiyakis output is provided in HDF5. The datasets

that I prepared for the models are also in HDF5 and fit the design provided by

the script generic dataset.py, described later in section 3.2 and can be reviewed

in the section 6. Each group in the datasets for the models contains 1000 sam-

ples. Grouping multiple samples together increases the writing and reading speed

compared to storing them in a single group, which reduces the training time of the

models.

The HDF5 data structure

HDF5

group 0

metadata
* dataset 0

.
.

.

* dataset n

group n
* dataset 0

.
.

.

* dataset n
metadata

metadata

.
.

.

metadata

metadata

metadata

metadata

Figure 6: This picture shows a sketch of how an HDF5 file is built up. The format can organize
datasets within different groups if necessary. Everything in the HDF5 format can
have metadata information. HDF5 supports multiple different data types and data
slicing. Data slicing enables efficient work with large datasets and prevents that the
entire dataset is loaded into the memory.

21

3. Methods

3 Methods

3.1 Signal interpolation

The base signals can have different lengths. However, the model always takes a

chunk with a given number of bases, in my case, five. As the number of input values

is fixed, I implemented a simple linear interpolation (algorithm 1) to resize the base

signals to a given length. Different signal lengths for the Taiyaki prepared data

were tested: 10, 20, and 30. It seems that the longer the signal length, the better

the performance of the model. Therefore, I only used the signal length 30 for the

datasets prepared with Nanopolish eventalign. Because of time constraints, I

could not yet try out other signal lengths. I will present models trained on datasets

with signal length 30 in my results section 4.

The algorithm 1, which is used to interpolate a given signal, applies one of the

following operations. It can shrink a long signal or can inflate a short signal to a

given signal length. To accomplish this, the ratio calculated from the size of the

given input signal is used, which is the number of data points, and the desired signal

length for the model input. This ratio is calculated so that the input signal’s first

and last value is used as the first and last value of the output signal, which I will call

inter signal. The ratio is used as an increment to step through the input signal. If the

current step position is not an integer, then the value for the inter signal is calculated

by using the index-wise bordering data points from the input signal. These values

are weighted with the distance of the step position to the data points. Using these

weights, I linearly interpolate the desired data point like a weighted mean. This

works because the sum of the weights, hence the distances to the bordering data

points, is one. The bordering data points have the indices bstep positionc and

dstep positione in the signal array. Figure 7 and 8 illustrate how the algorithm 1

works. If the current step position is an integer, then the value from my input

signal is taken. Another approach to get the same linear interpolation would be to

calculate the slope of the bordering data points together with the distance of the

step position to get the new data point.

22

3. Methods

Algorithm 1: Linear interpolation (pythonlike pseudocode)

1 import numpy as np

2 input : array s i gna l , i n t s i g n a l l e n g t h

3 output : array i n t e r s i g n a l

4 begin

5 i n t e r s i g n a l ← np . z e ro s (s i g n a l l e n g t h)

6 r a t i o ← len(signal)−1
size−1

7 r a t i o po s , s i g n a l p o s ← 0 , 0

8

9 while s i g n a l p o s < l en (i n t e r s i g n a l) :

10

11 # case : r a t i o p o s i s an i n t e g e r : take t h i s va lue

12 i f r a t i o p o s % 1 == 0 :

13 i n t e r s i g n a l [s i g n a l p o s] ← s i g n a l [i n t (r a t i o p o s)]

14

15 # cont inuous ly i n t e r p o l a t e at the miss ing p o s i t i o n s

16 else :

17 # ca l c u l a t e bot and top border value p o s i t i o n s

18 bot ← i n t (np . f l o o r (r a t i o p o s))

19 top ← i n t (np . c e i l (r a t i o p o s))

20

21 # in t e r p o l a t e with border ing va lue s

22 # weights are the inve r t ed d i s t an c e s

23 i n t e r s i g n a l [s i g n a l p o s] ← s i g n a l [bot] ∗ (top − r a t i o p o s)

24 + s i g n a l [top] ∗ (r a t i o p o s − bot)

25

26 s i g n a l p o s ← s i g n a l p o s + 1

27 r a t i o p o s ← r a t i o p o s + r a t i o

28

29 end

30 return i n t e r s i g n a l

31 end

23

3. Methods

Linear interpolation: signal inflation

1.0 7.0 10.0 2.5 7.0 11.5 4.0

1.0 5.0 8.0 10.0 5.0 4.0 7.0 10.0 9.0 4.0

Figure 7: I used Algorithm 1 on the array written in black above the graph of size 7 to inflate
it to the array in red below the graph of size 10.

Linear interpolation: signal shrinking

1.0 4.0 5.5 5.0 9.5 6.5 4.0 8.5 4.5 5.0

1.0 6.0 1.5 6.0 4.5 6.0 10.5 3.0 4.5 9.0 4.57.5 4.5 5.0

Figure 8: I used Algorithm 1 on the array written in black above the graph of size 14 to shrink
it to the array in red below the graph of size 10.

24

3. Methods

3.2 Python scripts

Python scripts are used to learn more about the data and to preprocess the data for

the neural networks. These scripts can be found on the USB device in the attachment

section 6. The scripts prepare dataset.py, train model.py, generic dataset.py

and test model.py were provided by S. Krautwurst and then further edited and

changed by myself. Essential scripts are presented and shortly described below:

• taiyaki prepare.py

is used to prepare the input samples from the read signals in the Taiyaki

output file. This script builds chunks of a given size with a given base (A) in

the middle. It extracts the corresponding base signals of this chunk. Taiyakis

segmentation resolution is bound to multiple of ten: 10, 20, 30, There are

no segments of other lengths.

• nanopolish prepare.py

is used to prepare the input samples from the Nanopolish eventalign output

file. The Nanopolish eventalign tool heavily over-segments the nanopore

signal of read parts that the tool could map to a given reference sequence.

The script searches for chunks of a given size and base (A) in the middle of

the chunk. While doing this, over-segmented events are concatenated together,

and a chunk is formed out of them if a given number (five) of consecutive events

are found. To keep it simple, the script currently uses the Taiyaki output to

extract the raw nanopore signal instead of searching multiple Fast5 files for

the signal. The Nanopolish eventalign output file itself does not provide

the nanopore signal, only aggregated features like mean or standard deviation,

among the signal segmentation.

• balance dataset.py

takes a built dataset from prepare dataset.py or nanopolish prepare.py

and balances them. After balancing the datasets contain the same amount of

samples per provided class (0 = unmodified, 1 = modified). All samples of the

minor class are included. The same amount of samples from the major class

are randomly drawn. The classes are sorted within the balanced dataset.

25

3. Methods

• generic dataset.py

was designed to provide a general data structure for the training and evaluated

datasets. The script is used to load and handle the HDF5 files in multipro-

cessing and create the samples directly on the desired device.

• train model.py

is used to train the neural networks with different hyperparameters.

– One is the batch size, which is the number of samples for which the loss is

calculated before the model’s weights are adjusted via backpropagation.

This mainly affects how fast the model is trained, as backpropagation is

very time-consuming. It can prevent over-fitting, as the model sees many

different random samples at once. For all models that will be presented

later, I used a batch size of 16.

– The learning rate is a scalar for the weight adjustment in backpropaga-

tion. The default learning rate is 0.0001.

– Another parameter is the number of training epochs, which is at least 80.

In some models, the number of epoch goes up to 200 to see if the model

can still learn and improve by training for more epochs.

– The number of transformer encoder layers within the transformer part of

the models can be changed as well. The default here is two.

– The last much-used parameter is the number of workers. This parameter

determines how many subprocesses are used by the dataloader module

of PyTorch in the training loop. These subprocesses preload the sample

batches in parallel in the background to increase the training speed. They

are prepared on the given device (CPU or GPU), where the model should

be trained to reduce data traffic. The default device is the GPU (cuda:0).

• test model.py

is the script to evaluate trained models with a given dataset. It is structured

similarly to train model.py without the training part.

26

3. Methods

• model.py

contains different model classes. These classes define the model’s architecture.

There is currently a superclass for every model that contains the methods for

the sample preparation to build the training and evaluation datasets. This

includes signal interpolation.

• plot signals.py

plots the nanopore signals from a given prepared dataset for all found motifs

of a given size. A subset of 200 signals is plotted to represent every motif

found in the dataset and to keep the plots clear and not overloaded. This

script was used to examine the data and learn more about the nanopore signal

and the shift resulting from the m6A modification. It also helped to show the

importance of signal segmentation.

• plot curves.py

plots the precision-recall and receiver operating characteristic (ROC) curves

seen in section 4 from the classification data of up to eight models.

3.3 Model architecture

The models are built using the transformer encoder and linear layers from PyTorch.

First, the input samples are split. One part is the interpolated base signals, and the

other part is the additional features like original signal length and reference bases

one-hot encoded. The base signals are sent to the transformer encoder, whose output

will be concatenated with the additional features to be processed by the linear layers.

Finally, a linear layer reduces the input to one value. After that, a sigmoid function

transforms the value from an interval of [−∞,∞] to an interval of [0, 1]. This output

value represents the methylation status prediction of the input sample with the A in

the middle. An activation function and a layer normalization separate every linear

layer, and the transformer encoder also uses an activation function. The models use

the rectified linear unit (ReLU) and leaky rectified linear unit (LReLU) activation

functions. The details are described and can be seen in following figures 10 - 12.

27

3. Methods

Activation functions

0

0

1 2 3-1-2-3
-1

1

2

3
RELU
LRELU
GELU

Figure 9: The black graph shows the standard ReLU activation function. This function is
constant 0 from x ∈ [−∞, 0) and x for x ∈ [0,∞]. Simply put ReLU = max(0, x).
LReLU, here in orange, is different, the negative part is multiplied with a slope,
so it is not constant 0. PyTorch provides the formula LReLU = max(0, x) +
negative slope ∗ min(0, x). The LReLU in the models has the default value for the
negative slope, which is 0.01. The gaussian error linear unit (GELU) function shown
in blue is another possible default activation function integrated in PyTorch.

3.3.1 Transformer layer stacks

A transformer model uses the multi-head self-attention mechanism, instead of re-

currence or convolution, to solve the sequence transduction problem and learn long-

range dependencies within input sequences [10, 36]. Recurrent neural networks are

used in time series processing, but due to the recurrence and the vanishing gradient

problem, they have an increased learning time [13]. The vanishing gradient problem

describes that the gradient to update the weight of a neuron will be vanishingly small

in some cases, which also depends on the derivatives of the activation functions. The

more weight adjustments a network executes, the higher the chance is that this prob-

lem occurs. The transformer model reduces this problem while keeping the ability

28

3. Methods

to solve the sequence transduction problem with the help of the self-attention mech-

anism instead of recurrence. Using this mechanism, the transformer architecture is

more parallelizable than recurrent neural networks and requires less training time.

The multi-head self-attention mechanism of the transformer model is built out of

multiple attention units also called attention heads. An attention unit learns weights

for each input value with the help of a scaled dot-product. These weights are divided

into the categories query (Q), key (K), and value (V) and stored as matrices. Each

input sample is multiplied with each matrix. The attention of an input sample is

calculated with:

Attention(Q,K,V) = softmax

(
QKT

√
dK

)
V [36]

Using two matrices Q and K as QKT allows the attention to be non-symmetric. So, if

value i attends to value j, it does not necessarily mean that value j attends to value i.

dK is the dimensionality of the key matrix, and
√

dK stabilizes the gradients during

training. The softmax function normalizes the weights. The attention describes

which input values attend other input values. Multi-head attention describes that

multiple attention units are calculated in parallel for a given input sample. These

attention calculations are combined to produce an overall attention score for an

input sample [36].

29

3. Methods

Transformer encoder architecture

Tr
an

sf
or

m
er

 E
n
co

d
er

=

Tr
an

sf
or

m
er

 E
n
co

d
er

Tr
an

sf
or

m
er

 E
n
co

d
er

. . .

Tr
an

sf
or

m
er

 E
n
co

d
er

O
u
tp

u
t

In
p
u
t

O
u
tp

u
t

In
p
u
t

Tr
an

sf
or

m
er

 E
n
co

d
er

O
u
tp

u
t

In
p
u
t

= In
p
u
t

M
u
lt
i-

H
ea

d
 A

tt
en

ti
on

A
d
d
it
io

n
 &

 N
or

m
al

is
at

io
n

Fe
ed

 F
or

w
ar

d
 L

in
ea

r

A
d
d
it
io

n
 &

 N
or

m
al

is
at

io
n

O
u
tp

u
t

A

B n Layers

Figure 10: A shows the transformer encoder architecture as introduced by Polosukhin et
al. [36] in ”Attention is all you need”.
B describes how multiple a transformer encoder stack is illustraded for the models
architecture in Figure 12.

The transformer encoders in my models take the interpolated nanopore signal of

a given signal length as input. They use b signal size
2
c heads for the multi-head self-

attention mechanism and process this signal using a given number of encoder layers,

the ReLU activation function, and the layer normalization. Additionally, the feed-

forward linear layers of the transformer encoder have a dropout of zero and a size

of 256 neurons. A dropout can help prevent the over-fitting of the model to data.

The output of this part of the model has the same size as the input signal.

30

3. Methods

3.3.2 Linear layer stacks

The linear layers of the model have an input and output size of (signal size +

add feats)× chunk size, which represents the size of all features for every base con-

catenated together. In this case, the input contains the transformer output plus

the additional features of the sample as shown in Figure 12. Add feats defines the

number of features apart from the signal: the original signal length before the in-

terpolation and the reference bases one-hot-encoded. Within the linear stack, the

LReLU function and the layer normalization is used as shown in Figure 11. The

used LReLU is an adapted ReLU that has a negative slope of 0.01. This was done

to prevent the neurons from dying while training the model, as they might when

using the ReLU function. A neuron that uses the ReLU activation function might

end up stuck in the negative part of the function. Here the function always returns

zero. The gradient in the negative area is also zero, which means that the gradient

descent learning does not alter the weights anymore. The neuron is now stuck and

can not recover. Therefore, the LReLU function uses a negative slope greater than

zero so that the gradient is not zero and the neuron’s weights can still be adjusted.

Linear layer architecture

Li
n
ea

r

=

Li
n
ea

r

LR
E
LU

N
or

m
al

is
at

io
n

Li
n
ea

r

LR
E
LU

N
or

m
al

is
at

io
n

. . .

Li
n
ea

r

LR
E
LU

N
or

m
al

is
at

io
n

n Layers

Figure 11: The linear layers are stacked after each other. These linear stacks are built together
with the LReLU activation function and the layer normalization. The number of
stacked layers differs slightly between the models trained. The exact hyperpa-
rameters can be seen in table 3. How the linear stacks are used in the model’s
architecture is shown in Figure 12.

31

3. Methods

3.3.3 The network structure

Model architecture

Interpolated
Signal

Signal Length

RefbasesIn
p
u
t

S
am

p
le

Li
n
ea

r

Tr
an

sf
or

m
er

 E
n
co

d
er

Li
n
ea

r

M
et

h
yl

at
io

n
S
ta

tu
s

Li
n
ea

r

Figure 12: As described before, the input sample is split by the interpolated signal and the
additional features. The transformer encoder layers process the interpolated base
signals. For the raw sensor signal, a linear layer stack is installed in front of
the transformer. These layers should preprocess the signal for the transformer
encoder, as they are not normalized and do not have small values around zero.
The assumption here is that the transformer model handles values near zero better.
The transformer encoder uses the default ReLU activation function. PyTorch only
allows to use the ReLU or GELU activation function. After the second linear layer
stack, a single linear layer reduces the input to a single value. A sigmoid function
converts this value to an interval of [0, 1]. The output represents the methylation
status for the input chunk. 0 means the middle base of the chunk is an unmodified
A. 1 means it is m6A methylated.

Every model follows the architecture shown in Figure 12. Some of the models are

shown in the following tables. All models were trained using the EpiNano datasets

and validated on the Modbuster datasets, table 2. For the training, I used PyTorch’s

binary cross-entropy with default settings. It is a loss function to calculate the loss

between the methylation labels (0 or 1) and the model’s outputs, which is the

predicted methylation status prediction for a sample. The loss function is a metric

and calculates a distance or error score [23]. This score penalizes the prediction

based on the difference from the prediction to the label.

32

3. Methods

Table 3: These tables show the models (A) and the corresponding hyperparameters used while
training them (B).
A is a list of all numbers of different layers used in the architecture in Figure 12.
B contains the models I will present and compare in this thesis. Every model gets an
ID to map the corresponding evaluation results in other tables. norm = normalized
signal, unorm = unnormalized signal, raw = raw sensor signal

A

Model
architecture

Number of
linear layers

before transformer

Number of
transformer

encoders

Number of
linear layers

after transformer

transformer slim 0 2 2

trans slim raw 1 2 2

trans big raw 2 5 3

B

ID
Model

architecture
EpiNano

trainingset
Chunk

size
Signal
size

Signal
type

Number
of epochs

0 transformer slim Nanopolish 5 30 norm 80

1 transformer slim Taiyaki 5 30 norm 80

2 transformer slim Nanopolish 5 30 unorm 80

3 transformer slim Taiyaki 5 30 unorm 80

4 trans slim raw Nanopolish 5 30 raw 200

5 trans slim raw Taiyaki 5 30 raw 200

6 trans big raw Nanopolish 5 30 raw 200

The models that use the norm and unorm signal type were trained 80 epochs. The

models trained on the raw signal type perform better than the norm and unorm

counterparts on the Modbuster evaluationset, table 4. Therefore, I focused on the

raw signal type and tried to increase the model’s performances with other architec-

tures or more extended training periods, as seen in Figure 12 and table 3. In section

4 table 4, I compare the accuracies of the models after 80 epochs. Later, I compare

the models with the best accuracy, regardless of the number of epochs used while

training.

33

3. Methods

3.3.4 Training strategy

The models get trained using the EpiNano datasets. These sets in table 2 are

prepared so that the amount of samples for both classes in a set is the same. While

training, the Dataloader from PyTorch draws these samples without replacement

randomly and prepares them in a batch for training. The model gets trained with

a batch of training samples. It predicts the methylation status of every sample in

the batch. The loss of this batch is calculated to perform backpropagation. The

mean binary cross-entropy function (BCELoss) of PyTorch calculated the loss for

every batch. The ground-truth is the binary label of the samples in the batch

representing unmodified or m6A methylated. Using this loss, the model’s weights

can be adjusted via backpropagation and a learning rate. The model learns to

predict the methylation status from the signal and additional features. Every model

gets trained using a learning rate of 0.0001. The trainingset gets split into the actual

set for training (80% of the samples) and a testset (20% of the samples) to monitor

the training results. The model never sees the samples of this test split, but they

originate from the same data as the training samples. With the help of the test

split, it can be observed if my model learns to predict the methylation status and

if it starts to over-fit on the training split. In the latter case, the performance on

the testset would be low or decrease, while the performance on the training split

would increase. In the first case, the performance on the testset would increase too.

Performance describes the accuracy and the loss of the model for a given input.

34

3. Methods

3.4 Sample processing

As described earlier, the models see the samples in a batch, meaning multiple sam-

ples are used to calculate a loss before adjusting the neuron’s weights. These input

samples are chunks of size five whose features are processed differently by the mod-

els. First, the interpolated signal is split from the additional features within the

chunk, as seen in Figure 12. The interpolated base signals are passed to the trans-

former encoders, which are vectors with the same length of the given signal length.

The output of the transformer encoders is then concatenated with the additional

features of the input sample. Currently, additional features are the length of the

original base signal and the reference base as an one-hot-encoding. The concate-

nated features are the input of the linear layers of the model. These layers process

the output of the transformer part and the additional features together. To calculate

the model’s prediction loss, every sample is labeled with a 0 (unmodified) or 1 (m6A

methylated).

35

4. Results

4 Results

In the following sections, I want to present visualizations of the data that I used to

train and evaluate my models. This will provide a deeper look into the segmentation

of Nanopolish and Taiyaki, the base signals, and the shift of the signal caused by

the modification. Furthermore, I will evaluate the performance of my models to

predict the m6A methylation on the Modbuster IVT datasets. I used a ROC curve

and precision-recall curve to compare the models.

4.1 The segmentation is the foundation

The plot signals.py script is used to analyze the segmentation and samples of

the prepared datasets. This script takes a prepared dataset as the input and cre-

ates base signal plots for all found motifs. The datasets contain samples of motifs

with an A as the central base, and the base signal lengths are interpolated to a size

of 30 data points. The following plots show these 30 data points from the motif

GGACT (T = U in RNA) over a subset of 200 samples per class. The GGACT

motif shows a relatively good separation between the unmodified and modified sig-

nal compared to other motifs. Additionally, a signal distribution for each base is

shown on the right-hand side of the segments. A histogram can be seen on the

x-axis of these plots. This histogram shows a relative distribution of the original

signal lengths of the plotted subset. Each bar of the histogram covers a range of

lengths. The y-axis left shows the value of the data points, while the y-axis on

the right shows the height of the histogram. In the case of the unnormalized sig-

nal plots, a k-mer model from nanoporetech provides distributions for comparison.

These models can be found unter the name r9.4 180mv 70bps 5mer RNA under

github.com/nanoporetech/kmer models/tree/master/.

36

4. Results
G

G
A

C
T

sq
u

ig
g
le

-
N
a
n
o
p
o
l
i
s
h

E
p

iN
a
n

o
n

o
rm

a
lize

d
p

A

0
1
5
0

G
G

A
C

T
-5 -4 -3 -2 -1 0 1 2 3 4 5

can
2
0
0
 sa

m
p
le

s, (1
2
8
6
2
)

0
1
5
0

G
G

A
C

T
-5 -4 -3 -2 -1 0 1 2 3 4 5

mod

2
0
0
 sa

m
p
le

s, (1
3
7
0
5
)

0
1
5
0

G
G

A
C

T
-5 -4 -3 -2 -1 0 1 2 3 4 5

both

4
0
0
 sa

m
p
le

s, (2
6
5
6
7
)

0 1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0 1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0 2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

M
o
tif G

G
A
C
T: #

2
6
5
6
7
 - m

o
d
 1

3
7
0
5
 : ca

n
 1

2
8
6
2

T
h
e
 h

istro
g
ra

m
s b

e
lo

w
 th

e
 b

a
se

sq
u
ig

g
le

s sh
o
w

 th
e
 re

la
tive

 o
rig

in
a
l le

n
g
th

 d
istrib

u
tio

n
 o

f th
e
 sh

o
w

n
 b

asesq
u
ig

g
les.

T
h
e
 cu

rve
s rig

h
t o

f th
e
 b

a
se

s sh
o
w

 th
e
 sig

n
a
l d

istrib
u
tio

n
.

sig
n
a
l d

a
ta

p
o
in

ts

normalized current in pA

F
ig

u
re

1
3

:
T

h
is

p
ictu

re
sh

ow
s

200
in

terp
olated

n
orm

alized
p

A
sign

als
p

er
class

from
th

e
E

p
iN

an
o

d
ataset,

u
sin

g
th

e
N
a
n
o
p
o
l
i
s
h

segm
en

tation
of

th
e

5’
G

G
A

C
T

3’
m

otif.
T

h
e

u
n

m
o

d
ifi

ed
m

otifs
are

called
can

an
d

are
sh

ow
n

in
b

lu
e,

w
h

ile
th

e
m

6A
m

otifs
are

colored
red

an
d

called
m
o
d

.

37

4. Results
G

G
A

C
T

sq
u

ig
g
le

-
N
a
n
o
p
o
l
i
s
h

E
p

iN
a
n

o
u

n
n

o
rm

a
lize

d
p

A

0
1
5
0

G
G

A
C

T
0

1
6

3
2

4
8

6
4

8
0

9
6

1
1
2

1
2
8

1
4
4

1
6
0

can
2
0
0
 sa

m
p
le

s, (1
2
7
0
5
)

0
1
5
0

G
G

A
C

T
0

1
6

3
2

4
8

6
4

8
0

9
6

1
1
2

1
2
8

1
4
4

1
6
0

mod

2
0
0
 sa

m
p
le

s, (1
3
7
0
5
)

0
1
5
0

G
G

A
C

T
0

1
6

3
2

4
8

6
4

8
0

9
6

1
1
2

1
2
8

1
4
4

1
6
0

both

4
0
0
 sa

m
p
le

s, (2
6
4
1
0
)

0 1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0 1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0 2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

M
o
tif G

G
A
C
T: #

2
6
4
1
0
 - m

o
d
 1

3
7
0
5
 : ca

n
 1

2
7
0
5

T
h
e
 h

istro
g
ra

m
s b

e
lo

w
 th

e
 b

a
se

sq
u
ig

g
le

s sh
o
w

 th
e
 re

la
tive

 o
rig

in
a
l le

n
g
th

 d
istrib

u
tio

n
 o

f th
e
 sh

o
w

n
 b

a
sesq

u
ig

g
les.

T
h
e
 d

istrib
u
tio

n
-cu

rve
 le

ft in
 th

e
 m

id
d
le

 b
a
se

 sh
o
w

s th
e
 n

a
n
o
p
o
re

te
ch

 R
N

A
 m

o
d
e
l (le

ft) a
n
d
 th

e
 cu

rve
s rig

h
t o

f th
e
 b

a
se

s sh
o
w

 th
e
 sig

n
a
l d

istrib
u
tio

n
.

sig
n
a
l d

a
ta

p
o
in

ts

current in pA

F
ig

u
re

1
4

:
T

h
is

p
ictu

re
sh

ow
s

200
in

terp
olated

u
n

n
orm

alized
p

A
sign

als
p

er
class

from
th

e
E

p
iN

an
o

d
ataset,

u
sin

g
th

e
N
a
n
o
p
o
l
i
s
h

segm
en

tation
of

th
e

5’
G

G
A

C
T

3’
m

otif.
T

h
e

u
n

m
o

d
ifi

ed
m

otifs
are

called
can

an
d

are
sh

ow
n

in
b

lu
e,

w
h

ile
th

e
m

6A
m

otifs
are

colored
red

an
d

called
m
o
d

.T
h

e
cu

rves
on

th
e

left-h
an

d
sid

e
of

th
e

m
id

d
le

b
ase

sh
ow

s
th

e
d

istrib
u

tion
m

o
d

els
from

n
an

op
oretech

.

38

4. Results
G

G
A

C
T

sq
u

ig
g
le

-
n

a
n

o
p

o
lish

E
p

iN
a
n

o
ra

w

0
1
5
0

G
G

A
C

T
2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

can

2
0
0
 sa

m
p
le

s, (1
2
9
0
0
)

0
1
5
0

G
G

A
C

T
2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

mod

2
0
0
 sa

m
p
le

s, (1
3
7
0
5
)

0
1
5
0

G
G

A
C

T
2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

both

4
0
0
 sa

m
p
le

s, (2
6
6
0
5
)

0 1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0 1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0 2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

M
o
tif G

G
A
C
T: #

2
6
6
0
5
 - m

o
d
 1

3
7
0
5
 : ca

n
 1

2
9
0
0

T
h
e
 h

istro
g
ra

m
s b

e
lo

w
 th

e
 b

a
se

sq
u
ig

g
le

s sh
o
w

 th
e
 re

la
tive

 o
rig

in
a
l le

n
g
th

 d
istrib

u
tio

n
 o

f th
e
 sh

o
w

n
 b

a
sesq

u
ig

g
les.

T
h
e
 cu

rve
s rig

h
t o

f th
e
 b

a
se

s sh
o
w

 th
e
 sig

n
a
l d

istrib
u
tio

n
.

sig
n
a
l d

a
ta

p
o
in

ts

raw sensor value

F
ig

u
re

1
5

:
T

h
is

p
ictu

re
sh

ow
s

200
in

terp
olated

raw
sign

als
p

er
class

from
th

e
E

p
iN

an
o

d
ataset,

u
sin

g
th

e
N
a
n
o
p
o
l
i
s
h

segm
en

tation
of

th
e

5’
G

G
A

C
T

3’
m

otif.
T

h
e

u
n

m
o

d
ifi

ed
m

otifs
are

called
can

an
d

are
sh

ow
n

in
b

lu
e,

w
h

ile
th

e
m

6A
m

otifs
are

colored
red

an
d

called
m
o
d

.

39

4. Results

The figures 13 - 15 show the three different signal types for the motif GGACT of the

prepared dataset from EpiNano using the Nanopolish segmentation. Two hundred

signals of both classes are plotted. These signal samples are drawn from the ran-

domized and balanced dataset. The raw and unnormalized signals separate more at

and around the modified base compared to the normalized variant. This can also be

seen in other motifs of the same dataset and the Modbuster dataset, The normalized

signal in Figure 13 shows nearly no separation between the unmodified or canonical

signal in blue and the modified m6A signal in red. The signal separates just slightly

at the second G, A, and T. The separation is much stronger when looking at the

unnormalized pA signal in Figure 14 and also appears at other bases in the motif.

Here the 400 are randomly picked samples separate in both G bases and the T at

the 3’ end. This is again much different from the raw signal in Figure 15. The

middle base A separates from the m6A variant, and the surrounding base signals

overlap much more. All three plots show a difference in the original signal length

at the second G and the A base. In the unmodified signal, the A signal is longer

than the m6A signal, as seen in the histogram. The second G shows the opposite

picture. Here the G of the unmodified signal is generally shorter than the G of the

modified motifs. This indicates that using the length of the base signals can be a

strong predictor for the methylation prediction.

In addition, the signal is relatively well segmented by the Nanopolish segmentation.

Some outliers, fluctuations, or spikes within the signals could make the prediction

very hard for these samples. Normalization can help with making the signal much

more concise, but the read normalization, as seen in these pictures with fully or un-

methylated reads, seems to destroy the signal shift caused by the m6A modification.

In the case of IVT data, this normalization does not seem to be useful, which might

also lead to lower performances of the models trained with the normalized signal

data, which can be seen in section 4.2.

40

4. Results
G

G
A

C
T

sq
u

ig
g
le

-
T
a
i
y
a
k
i

E
p

iN
a
n

o
ra

w

0
1
5
0

G
G

A
C

T
2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

can

2
0
0
 sa

m
p
le

s, (1
7
2
6
4
)

0
1
5
0

G
G

A
C

T
2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

mod

2
0
0
 sa

m
p
le

s, (1
6
9
4
2
)

0
1
5
0

G
G

A
C

T
2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

both

4
0
0
 sa

m
p
le

s, (3
4
2
0
6
)

0 1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0 1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0 2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

M
o
tif G

G
A
C
T: #

3
4
2
0
6
 - m

o
d
 1

6
9
4
2
 : ca

n
 1

7
2
6
4

T
h
e
 h

istro
g
ra

m
s b

e
lo

w
 th

e
 b

a
se

sq
u
ig

g
le

s sh
o
w

 th
e
 re

la
tive

 o
rig

in
a
l le

n
g
th

 d
istrib

u
tio

n
 o

f th
e
 sh

o
w

n
 b

a
sesq

u
ig

g
les.

T
h
e
 cu

rve
s rig

h
t o

f th
e
 b

a
se

s sh
o
w

 th
e
 sig

n
a
l d

istrib
u
tio

n
.

sig
n
a
l d

a
ta

p
o
in

ts

raw sensor value

F
ig

u
re

1
6

:
T

h
is

p
ictu

re
sh

ow
s

200
in

terp
olated

raw
sign

als
p

er
class

from
th

e
E

p
iN

an
o

d
ataset,

u
sin

g
th

e
T
a
i
y
a
k
i

segm
en

tation
of

th
e

5’
G

G
A

C
T

3’
m

otif.
T

h
e

u
n

m
o

d
ifi

ed
m

otifs
are

called
can

an
d

are
sh

ow
n

in
b

lu
e,

w
h

ile
th

e
m

6A
m

otifs
are

colored
red

an
d

called
m
o
d

.

41

4. Results
G

G
A

C
T

sq
u

ig
g
le

-
N
a
n
o
p
o
l
i
s
h

M
o
d

b
u

ste
r

ra
w

0
1
5
0

G
G

A
C

T
2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

can

2
0
0
 sa

m
p
le

s, (6
1
6
6
)

0
1
5
0

G
G

A
C

T
2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

mod

2
0
0
 sa

m
p
le

s, (7
0
4
4
)

0
1
5
0

G
G

A
C

T
2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

both

4
0
0
 sa

m
p
le

s, (1
3
2
1
0
)

0 1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0 1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0 2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

M
o
tif G

G
A
C
T: #

1
3
2
1
0
 - m

o
d
 7

0
4
4
 : ca

n
 6

1
6
6

T
h
e
 h

istro
g
ra

m
s b

e
lo

w
 th

e
 b

a
se

sq
u
ig

g
le

s sh
o
w

 th
e
 re

la
tive

 o
rig

in
a
l le

n
g
th

 d
istrib

u
tio

n
 o

f th
e
 sh

o
w

n
 b

a
sesq

u
ig

g
les.

T
h
e
 cu

rve
s rig

h
t o

f th
e
 b

a
se

s sh
o
w

 th
e
 sig

n
a
l d

istrib
u
tio

n
.

sig
n
a
l d

a
ta

p
o
in

ts

raw sensor value

F
ig

u
re

1
7

:
T

h
is

p
ictu

re
sh

ow
s

200
in

terp
olated

raw
sign

als
p

er
class

from
th

e
M

o
d

b
u

ster
d

ataset,
u

sin
g

th
e
N
a
n
o
p
o
l
i
s
h

segm
en

tation
of

th
e

5’
G

G
A

C
T

3’
m

otif.
T

h
e

u
n

m
o

d
ifi

ed
m

otifs
are

called
can

an
d

are
sh

ow
n

in
b

lu
e,

w
h

ile
th

e
m

6A
m

otifs
are

colored
red

an
d

called
m
o
d

.

42

4. Results

Figure 16 visualizes the segmented signal of the Taiyaki tool. Within all motifs of

the Taiyaki prepared datasets, the signal looks similar regarding the segmentation.

The signal segment of the second G in the motif is concise, as indicated by the

histogram in Figure 16 and the signal protrudes into the middle A base. Within A,

the signal drops to another level. This level is most likely the actual signal of the C

when comparing to the Nanopolish segmentation. Taiyaki seems to have significant

issues with the signal segmentation. One major problem with the segmentation is

the limited resolution with multiples of ten data points. The segmentation might

not be a big problem for the basecallers, as they take a big chunk of the signal and

do not take any segmentation into account. Big convolutional neural networks take

the big signal chunk as their input to call the base sequence. This way, they work

independently of the base segmentation. However, in my case, an optimal signal

segmentation that represents the 5-mer events of the bases is favorable and needed.

It enables a more detailed analysis of the signal and provides a better basis to build

chunks. The models are built to process chunks of bases.

Another issue of the data can be seen in picture 17. It shows the raw signal of

the GGACT motif in the Modbuster IVT dataset. The canonical and modified

signals seem to split up much more than in the EpiNano dataset. This is most

likely the result of the way the dataset was created. Every arrangement of five bases

with a single-A as the central base appears within reads in this dataset, with some

exceptions within adapter regions. Nevertheless, not every combination of these five

base sequences is present. Also, not every nine base sequence with just one A in

the middle exists in this dataset, as already mentioned before. A better way to

construct such an IVT dataset would be to use every combination and arrangement

of nine bases with a single-A at the central position. This prevents the outer base

signals of a five base long motif showing shifts caused by neighboring modified m6As.

Currently, the signals of the G, C, and T bases in Figure 17 are also influenced by the

previous and following m6A and therefore, the signals separate much more. In the

EpiNano dataset, not every fifth base is an A or m6A and not only single-A sequences

are present. When training on the EpiNano and evaluating the Modbuster dataset,

this must be taken into account. More shifts within the Modbuster samples could

43

4. Results

influence the prediction, as the model would not expect so many shifts because they

were not present in the trainingset. Either way, the performance of the models must

be interpreted carefully, mainly because the sample originates from IVT datasets

rather than in vivo datasets. Nevertheless, it is feasible to compare the performances

of the different models qualitatively and find out which data works best to transform

the knowledge from one dataset to the other.

4.2 Model performances

I used the test models.py script to check the accuracy of my models on the Mod-

buster IVT dataset. The models trained on the normalized and unnormalized

datasets were just trained for 80 epochs because previous projects [33] and the

results during this thesis show that the raw signal works better than the normalized

or unnormalized one. Also, the signal plots in the Figures 13 - 17 above show, that

within the raw signal the canonical and modified motifs separate much better and

the different datasets are somewhat comparable. This is why the raw signal type

models are trained for up to 200 epochs instead of 80 on the raw EpiNano datasets

and have slightly different model architecture. The following key figures provide a

measurement for the performance of the models:

1. accuracy = number of true predictions
number of all predictions

2. precision = number of true positive predictions
number of positive predictions

3. recall or true positive rate (TPR) = number of true positive predictions
number of all positive samples

4. false positive rate (FPR) = number of false positive predictions
number of all negative samples

After training, the model is checked for every tenth epoch from 80 to 200 for its

accuracy on the respective Modbuster IVT dataset. The accuracy of every model

after 80 epochs and the best performing model after every tenth epoch from epoch

80 to 200 can be seen in the following table.

44

4. Results

Table 4: This table shows the accuracy of models 0 to 6 on the respective Modbuster eval-
uationset. The accuracy increases when using more training epochs on the models
trained with the Nanopolish segmentation on the raw signal, as seen in models 4
and 6. The model trained on the raw signal with the Taiyaki segmentation shows a
much higher increase when trained longer than 80 epochs. A reason for this behavior
can be that Taiyaki has a systematic segmentation pattern in the case of m6A that
differs from a canonical A base, which the model learns to use when predicting the
methylation status.

Model ID
Modbuster

evaluation set
Acc. at epoch 80 Best acc. & epoch

0 Nanopolish & norm 0.629 0.629 & 80

1 Taiyaki & norm 0.662 0.662 & 80

2 Nanopolish & unorm 0.557 0.557 & 80

3 Taiyaki & unorm 0.610 0.610 & 80

4 Nanopolish & raw 0.705 0.708 & 190

5 Taiyaki & raw 0.687 0.729 & 190

6 Nanopolish & raw 0.692 0.694 & 110

4.2.1 High accuracy in training

The models with the best accuracy in the evaluation are compared in multiple key

figures. The following plots are generated with Tensorboard, which is a tool to

visualize and track metrics of neural networks [34]. They show the accuracy of the

models while training on the 20% testset (Figure 18) and the loss per sample (Figure

19) for every epoch they were trained. Tensorboard does not plot the last epoch

value in the graph.

45

4. Results

T
e
stse

t
a
ccu

ra
cy

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

train
in

g
 ep

och

0
.6

8

0
.7

0
.7

2

0
.7

4

0
.7

6

0
.7

8

0
.8

0
.8

2

0
.8

4

0
.8

6

0
.8

8

0
.9

0
.9

2

0
.9

4

accuracy

ID
 0

: tran
s_

slim
 n

an
op

olish
 n

orm
ID

 1
: tran

s_
slim

 taiyaki n
orm

ID
 2

: tran
s_

slim
 n

an
op

olish
 u

n
orm

ID
 3

: tran
s_

slim
 taiyaki u

n
orm

ID
 4

: tran
s_

slim
_
raw

 n
an

op
olish

 raw
ID

 5
: tran

s_
slim

_
raw

 taiyaki raw
ID

 6
: tran

s_
b
ig

_
raw

 n
an

op
olish

 raw

F
ig

u
re

1
8

:
T

h
e

grap
h

s
visu

alize
th

e
accu

racy
of

th
e

resp
ective

m
o

d
el

on
th

e
20%

test
sp

lit
for

every
ep

o
ch

w
h

ile
train

in
g.

T
h

ey
w

ere
p

lotted
u

sin
g

T
e
n
s
o
r
b
o
a
r
d

.
T
e
n
s
o
r
b
o
a
r
d

d
o

es
n

ot
sh

ow
th

e
last

valu
e

of
th

e
train

in
g

ru
n

s
in

th
is

grap
h

.
M

o
d

els
train

ed
on

th
e

n
orm

alized
sign

al
learn

very
fast

an
d

reach
an

overall
h

igh
accu

racy
w

h
ile

train
in

g.
T

h
is

stron
gly

in
d

icates
th

at
a

n
orm

alization
of

th
e

sign
al

is
gen

erally
b

en
efi

cial.
M

o
d

els
train

ed
on

th
e

u
n

n
orm

alized
sign

al
d

o
n

ot
h

ave
su

ch
h

igh
accu

racies
on

th
e

20%
test

sp
lit.

T
h

e
sam

e
b

eh
avior

can
b

e
seen

in
m

o
d

els
train

ed
on

th
e

raw
sign

al.
W

h
en

train
in

g
for

u
p

to
200

ep
o

ch
s,

th
e

m
o

d
els

can
also

reach
sim

ilar
accu

racies
as

th
e

m
o

d
els

train
ed

on
th

e
n

orm
alized

sign
al

on
th

e
20%

test
sp

lit.
Ju

d
gin

g
from

th
is

grap
h

alon
e

fu
tu

re
step

s
for

m
y

w
ork

are
to

fi
n

d
a

b
etter

n
orm

alization
an

d
keep

th
e

com
p

arab
ility

b
etw

een
d

iff
eren

t
d

atasets
as

seen
b

efore
in

th
e

raw
sign

al
p

lots.
A

n
oth

er
id

ea
w

ou
ld

b
e

to
u

se
even

m
ore

train
in

g
ep

o
ch

s
to

stu
d

y
th

e
b

eh
avior

of
th

e
m

o
d

els.

46

4. Results

T
e
stse

t
lo

ss
p

e
r

sa
m

p
le

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

train
in

g
 ep

och

0
.0

1

0
.0

1
2

0
.0

1
4

0
.0

1
6

0
.0

1
8

0
.0

2

0
.0

2
2

0
.0

2
4

0
.0

2
6

0
.0

2
8

0
.0

3

0
.0

3
2

0
.0

3
4

0
.0

3
6

0
.0

3
8

loss

ID
 0

: tran
s_

slim
 n

an
op

olish
 n

orm
ID

 1
: tran

s_
slim

 taiyaki n
orm

ID
 2

: tran
s_

slim
 n

an
op

olish
 u

n
orm

ID
 3

: tran
s_

slim
 taiyaki u

n
orm

ID
 4

: tran
s_

slim
_
raw

 n
an

op
olish

 raw
ID

 5
: tran

s_
slim

_
raw

 taiyaki raw
ID

 6
: tran

s_
b
ig

_
raw

 n
an

op
olish

 raw

F
ig

u
re

1
9

:
T

h
is

p
lot

is
also

gen
erated

by
T
e
n
s
o
r
b
o
a
r
d

an
d

sh
ow

s
th

e
average

loss
p

er
sam

p
le

p
er

ep
o

ch
.

T
h

e
grap

h
s

sh
ow

th
e

sam
e

b
eh

avior
as

in
F

igu
re

18.
A

gain
th

e
n

orm
alized

sign
al

is
favorab

le
for

th
e

m
o

d
els.

T
h

e
u

n
n

orm
alized

an
d

raw
sign

als
are

h
ard

er
to

train
a

m
o

d
el.

N
everth

eless,
th

e
raw

sign
al

is
b

etter
to

tran
sfer

learn
ed

asp
ects

b
etw

een
d

ataset,
w

h
ich

can
b

e
seen

in
F

igu
re

15,
16

an
d

tab
le

4.
T

h
e

grap
h

d
o

es
n

ot
sh

ow
over-fi

ttin
g

b
eh

avior
yet.

If
th

e
m

o
d

els
w

ou
ld

over-fi
t

on
th

e
80%

train
in

g
sp

lit,
th

en
th

e
loss

on
th

e
20%

test
sp

lit
w

ou
ld

rise
again

.
M

o
d

el
4

an
d

6
sh

ow
s

sligh
t

ou
tliers

goin
g

u
p

an
d

d
ow

n
,

m
igh

t
b

e
stu

ck
in

a
lo

cal
or

glob
al

m
in

im
u

m
.

M
o

d
el

5
train

ed
on

th
e
T
a
i
y
a
k
i

prep
ared

E
p

iN
an

o
set

m
igh

t
still

im
prove

w
ith

m
ore

ep
o

ch
s.

47

4. Results

4.2.2 The models yield promising evaluation results

Precision-Recall curves

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

m6A - Precision-Recall

ID 1: trans_slim taiyaki norm e80 n=1762020: average precision = 0.728)
ID 2: trans_slim nanopolish unorm e80 n=1394076: average precision = 0.592)
ID 0: trans_slim nanopolish norm e80 n=1394076: average precision = 0.680)
ID 3: trans_slim taiyaki unorm e80 n=1762020: average precision = 0.674)
ID 6: trans_big_raw nanopolish raw e110 n=1394076: average precision = 0.768)
ID 5: trans_slim_raw taiyaki raw e190 n=1762020: average precision = 0.818)
ID 4: trans_slim_raw nanopolish raw e190 n=1394076: average precision = 0.788)

Figure 20: The precision-recall curves show the tradeoff between precision and recall for dif-
ferent thresholds for binary classification. If the classification threshold starts near
one and decreases, then more samples are classified as positive by the model, thus
increasing the TPR or recall and decreasing the precision. The grey line marks the
performance of a random guesser.

Figure 20 compares the models shown in table 3 on the respective Modbuster

evaluationset regarding precision and recall. Models trained on a Taiyaki pre-

pared EpiNano dataset were also evaluated on a Taiyaki prepared Modbuster

dataset. The same applies to models trained and evaluated on a Nanopolish pre-

pared dataset. The models 4, 5, and 6 that were trained on the EpiNano raw signals

48

4. Results

separate from the rest and reach higher precision values than the other models.

After these three models, the model trained on the Taiyaki normalized signal per-

forms the best. Also, the best overall model was trained and tested on the Taiyaki

prepared raw signal. I suspect that the Taiyaki prepared signal presents some seg-

mentation pattern in a small number of samples that the model uses to reach better

prediction performances. One such pattern can be seen in Figure 16, where the red

m6A signal protrudes into the segmentation of the following C, which does not often

appear in the unmodified variant. These patterns might enable model 5 to reach

0.729% accuracy instead of just 0.708% as model 4 in table 4. Unexpectedly, model

5 can predict the methylation status better than other models with a bad signal

segmentation as if the segmentation does not matter that much. Alternatively, the

transformer model and the attention mechanism could filter out the necessary signal

parts regardless of the segmentation quality. Figure 21 supports the performance

on the respective Modbuster evaluationsets seen in the precision-recall plot. The

models have the same order of performance, this time regarding the TPR and FPR,

with models 4, 5, and 6 being the best. They have the highest area under the

ROC curve (AUC). The models trained on the unnormalized signal perform the

worst on the Modbuster evaluationset and also not very well on the 20% test split.

The trans slim architecture was used for these models, which does not include a

linear layer stack in front of the transformer part to preprocess the values. However,

the unnormalized signal values are like the raw signal values not spread around 0.

Hence, it would be favorable to include a better normalization or preprocessing by

linear layers to improve the performance here. They might perform better with a

more fitting architecture or another preprocessing because the unnormalized signal,

like the raw signal, shows a little bit of a separation, seen in Figure 14. In the

shown plot, the separation does not appear in the middle modified base. It appears

in the bases around it, which are also in the sphere of influence (five bases) of the

modification within the pore sensor.

49

4. Results

Receiver operating characteristic (ROC) curve

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

m6A - ROC

ID 1: trans_slim taiyaki norm e80 n=1762020: AUC = 0.725
ID 2: trans_slim nanopolish unorm e80 n=1394076: AUC = 0.576
ID 0: trans_slim nanopolish norm e80 n=1394076: AUC = 0.685
ID 3: trans_slim taiyaki unorm e80 n=1762020: AUC = 0.653
ID 6: trans_big_raw nanopolish raw e110 n=1394076: AUC = 0.768
ID 5: trans_slim_raw taiyaki raw e190 n=1762020: AUC = 0.806
ID 4: trans_slim_raw nanopolish raw e190 n=1394076: AUC = 0.783

Figure 21: The ROC curve plots the TPR vs. the FPR on different classification thresholds for
binary classification. If the classification threshold starts near one and decreases,
then more samples are classified as positive by the model, thus increasing the TPR
and FPR. Again, the grey line marks the performance of a random guesser.

Overall, models 4 and 5 perform much better than any other models of this work and

from my project work on this topic [33]. The result shows that using the actual signal

works better than aggregated features when using deep neural networks. The models

are reasonably capable of predicting m6A predictions in another IVT dataset on the

single-nucleotide resolution on a set containing all possible modified and unmodified

single-A 5-mer motifs with the A in the middle of the sequence.

50

5. Discussion

5 Discussion

This thesis demonstrates a new way to predict the RNA m6A methylation status

using the nanopore signal of RNA reads with the help of neural networks. The

prediction is feasible on in vitro transcription data, but it has yet to be tested on

in vivo data. It is essential to have a good signal preprocessing to increase the

performance for the m6A prediction, as different signal types like the raw sensor

signal, unnormalized pA, and normalized pA signal show different levels of signal

separation, also called shift, between the unmodified and m6A modified sequences.

There are still some issues with the data and many ideas to improve the prediction

that I want to discuss shortly. Future steps should also be to validate my models

on datasets of other groups to have results for multiple datasets. Additionally, I

could look at the results on individual motifs or groups of motifs. As mentioned

in the introduction, the “DRACH“ motif is targeted by methyltransferases and

demethylases and therefore of particular interest to current research. It would be of

advantage if the models can confidently predict the m6A methylation within these

motifs.

5.1 The data problem

One issue of the datasets is the way they are constructed. IVT data provides training

and test data to test if methylation prediction from the nanopore signal is possible.

However, the reads that are used to get the nanopore signal do not appear this way

in vivo. The datasets that I used in my project are either entirely- or unmethylated

at all adenines. In vivo a transcript is not methylated at all adenines. There are

different modifications within one read at different positions that might even appear

all the time. This means the results of the models must be interpreted carefully,

as the models can predict the methylation status on an IVT dataset. However, it

is unclear if it can do so on an in vivo dataset. This means that in future work,

a ground-truth in vivo dataset is necessary to see if the models can keep up their

performance.

51

5. Discussion

5.2 Preprocessing of the signal

Another point of improvement is the signal (pre-) processing. As seen in the signal

plots and already explained, the signal read normalization suggested by Taiyaki

could be unfavorable with many m6A methylations. In vivo many different mod-

ifications could appear within a single transcript. This means that another signal

normalization might be favorable. One such normalization could be to take the

mean and standard deviation of completely unmodified 5-mer events and use them

to normalize each base signal independently. That also requires perfect signal seg-

mentation. Nanopolish eventalign provides a reasonably good segmentation but

cannot segment every read or misses some parts of reads. Taiyaki should not be

used to get a signal segmentation in future work. Here, it could be of advantage to

search for other segmentation and resquiggling tools. Another future step could be

to create a new segmentation tool or refine the existing segmentation of, for example,

Nanopolish eventalign.

One major influence on my data is the interpolation method. Currently, I interpolate

linearly, which compresses the signal and reduces the variance. Another idea is

to change the implementation of the interpolation algorithm to choose between

different interpolation methods, for example, a sigmoidal interpolation between two

data points instead of linear interpolation. Another would be to use distribution

models to interpolate the signal. The interpolation method should keep most of the

original signal’s properties while changing the length or amount of data points to a

given number.

Another approach could be to use existing signal processing methods to preprocess

the nanopore signal. Such a preprocessing could be to reduce the noise within the

signal with filters like the median filter. The Fourier-Transformation or the Wavelet-

Transformation could also be helpful to analyze different frequencies of the signal

and use these as input parameters.

52

5. Discussion

5.3 More features for the prediction

It might also be beneficial to change the model architecture and add more features.

The activation function could be changed, for example. There are other activation

functions that I could try in the future, for example, the GELU activation function,

which is widely used in natural language processing models like GPT-2 [28].

Additional features like some pore properties or information from the basecaller

could also help improve the methylation prediction. Pore properties describe, for

example, the state of the pore that was used to sequence the read or produced

the signal of the read. Such properties could be the applied electrical voltage on

the membrane, sequencing time within the whole sequencing run, temperature, and

others. The basecaller has some additional information as well. Guppy for example,

uses transition probabilities to generate the base sequence from the nanopore signal

[40]. These transition probabilities could also be used as input features, as they

might show a pattern when the Guppy basecaller sees the signal of a modified base.

Another feature could be if Guppy had a basecalling error near the modification that

was corrected using one of the resquiggler tools. I can also change the signal length

of the input base signals. The easiest future improvement for the m6A prediction

could be to combine all three signal types in the input of a single neural network

instead of looking at them separately, as I did in this thesis. This way, the network

could extract the advantageous properties of each signal type for the prediction.

Adjusting the model architecture could also help to increase the performance. I

already tried to make the model overall bigger, but the model did not show such

a good performance as the normal one. I also tried out long short-term mem-

ory (LSTM) layers instead of the transformer part, but they did not yield better

accuracies. LSTMs are artificial recurrent neural networks that are built to learn

long and short-term sequence dependencies [14]. A dropout in combination with

bigger models while training could also help to prevent over-fitting.

Another adjustment should be to adapt the architecture to the input. In the case of

the unnormalized signal, a linear layer stack in front of the transformer part could

help to preprocess the signal, similar to the architecture for the raw signal. I did

not do this, as I adjusted the architecture afterward and had little time to retrain

53

5. Discussion

every model on the unnormalized values with another architecture.

Apart from feature engineering and the architecture adaptation, a future step could

be to combine the methylation predictions for multiple reads that belong to the same

gene. This is introduced in methods that use the basecaller error rate for modifi-

cation predictions, which can refine the prediction. If the prediction is correct, one

could figure out the modification rate and the modification position of a transcript.

5.4 More exploration of the data

We need a better insight into which features are essential for the prediction. Other

approaches to predict the methylation could be beneficial to get this knowledge.

It is unclear what the deep neural networks do with the input features and which

features are essential to predict the methylation. They act as a black box in this case.

Approaches like general linear models or support vector machines could provide a

better insight into the data and reveal essential features to distinguish a methylated

signal from an unmodified one. By explorative investigations into the data, as I did

with the signal plots, essential features can be estimated. This explorative work is

necessary to improve models, as well as to understand how the data looks.

54

6. Conclusion

6 Conclusion

My master thesis proves that it is possible to predict the m6A methylation status on

RNA level within IVT data using only the nanopore signal and information about

the reference sequence. A good base signal segmentation is the foundation for further

processing steps and a more detailed analysis of the RNA base signals. The signal

shift depends strongly on the sequence content and also on the signal type. Signal

processing methods, like the Fourier transformation, Wavelet transformation, or

signal filters, could open up new insights into the nanopore signal. These methods

could help to reduce signal noise and filter the signal to find the essential signal

parts produced by the 5-mers passing the pore’s sensor that contribute the most

to the modification prediction. There are also other ideas to improve the RNA

modification prediction, such as including more features and changing the model

architecture. The gained knowledge of this work is helpful to develop methods and

tools for the RNA modification detection in ONT sequencing reads. It also provides

workflows and strategies to investigate other modifications apart from m6A, which

I want to study in the future. The major question to answer will be whether the

models also perform well on in vivo data. It would be groundbreaking if a reliable

tool can be developed that can call many different RNA modifications in in vivo

reads from the nanopore signal alone.

55

Appendix

Appendix

Used commands and parameters:

• python3 raw signal/nanopolish prepare.py <nanopolish summary.csv>

<nanopolish result.csv> <taiyaki output.hdf5> <mod read.ids>

<nomod read.ids> <output prepared dataset.hdf5> <model architecture>

[--signal size <signal size>] [--mod <nomodbase,modbase>]

[--datamode <datamode>]

Modbase defines the name of the modified base and nomodbase the regular

counterpart. Datamode defines the signal type to prepare.

• python3 raw signal/taiyaki prepare.py <model architecture>

<taiyaki output.hdf5><output prepared dataset.hdf5> [--signal size <signal size>]

[--modbase <nomodbase,modbase>] [--datamode <datamode>]

• python3 raw signal/balance dataset.py <dataset.hdf5><balanced dataset name>

• python3 utils/plot signals.py <balanced dataset.hdf5><output parent folder>

[--mod <modbase>] [--datamode <datamode>] [--kmer models <kmer.model>]

The kmer model can be provided with the unnormlized datamode. Datamode

defines the signal type to choose the correct axis limits.

• python3 raw signal/train model.py <model architecture> <traningsset>

[--num epochs <num epochs>] [--batch size <batch size>]

[--output parent folder <output path>]

Num epochs defines the number of training epochs. Batch size defines the

number of samples per training cycle.

• python3 raw signal/test model.py <model.torch><model.config><testset.hdf5>

The following USB device contains:

• additional figures for the GGACT signal types and segmentations,

• all major scripts described in this thesis and additional scripts.

I

Appendix

GGACT squiggle - Taiyaki Epinano normalized

0 150G G A C T
-5

-4

-3

-2

-1

0

1

2

3

4

5
ca

n
200 samples, (17342)

0 150G G A C T
-5

-4

-3

-2

-1

0

1

2

3

4

5

m
o
d

200 samples, (16942)

0 150G G A C T
-5

-4

-3

-2

-1

0

1

2

3

4

5

b
o
th

400 samples, (34284)

0

100

200

300

400

500

600

0

100

200

300

400

500

600

0

200

400

600

800

1000

1200

Motif GGACT: #34284 - mod 16942 : can 17342
The histrograms below the basesquiggles show the relative original length distribution of the shown basesquiggles.

The curves right of the bases show the signal distribution.

signal datapoints

n
or

m
al

iz
ed

 c
u
rr

en
t

in
 p

A

Figure S1: This picture shows 200 interpolated normalized pA signals per class from the
EpiNano dataset, using the Taiyaki segmentation of the 5’ GGACT 3’ motif.
The unmodified motifs are called can and are shown in blue, while the m6A motifs
are coloured red and called mod.

GGACT squiggle - Taiyaki Modbuster normalized

0 150G G A C T
-5

-4

-3

-2

-1

0

1

2

3

4

5

ca
n

200 samples, (7789)

0 150G G A C T
-5

-4

-3

-2

-1

0

1

2

3

4

5

m
o
d

200 samples, (9173)

0 150G G A C T
-5

-4

-3

-2

-1

0

1

2

3

4

5

b
o
th

400 samples, (16962)

0

100

200

300

400

500

600

0

100

200

300

400

500

600

0

200

400

600

800

1000

1200

Motif GGACT: #16962 - mod 9173 : can 7789
The histrograms below the basesquiggles show the relative original length distribution of the shown basesquiggles.

The curves right of the bases show the signal distribution.

signal datapoints

n
or

m
al

iz
ed

 c
u
rr

en
t

in
 p

A

Figure S2: This picture shows 200 interpolated normalized pA signals per class from the
Modbuster dataset, using the Taiyaki segmentation of the 5’ GGACT 3’ motif.
The unmodified motifs are called can and are shown in blue, while the m6A motifs
are coloured red and called mod.

II

Appendix

GGACT squiggle - Taiyaki Modbuster normalized

0 150G G A C T
-5

-4

-3

-2

-1

0

1

2

3

4

5
ca

n
200 samples, (6166)

0 150G G A C T
-5

-4

-3

-2

-1

0

1

2

3

4

5

m
o
d

200 samples, (7232)

0 150G G A C T
-5

-4

-3

-2

-1

0

1

2

3

4

5

b
o
th

400 samples, (13398)

0

100

200

300

400

500

600

0

100

200

300

400

500

600

0

200

400

600

800

1000

1200

Motif GGACT: #13398 - mod 7232 : can 6166
The histrograms below the basesquiggles show the relative original length distribution of the shown basesquiggles.

The curves right of the bases show the signal distribution.

signal datapoints

n
or

m
al

iz
ed

 c
u
rr

en
t

in
 p

A

Figure S3: This picture shows 200 interpolated normalized signals per class from the Mod-
buster dataset, using the Nanopolish segmentation of the 5’ GGACT 3’ motif.
The unmodified motifs are called can and are shown in blue, while the m6A motifs
are coloured red and called mod.

III

Bibliography

Bibliography
[1] Anaconda software distribution, 2020.

[2] C. R. Alarcón, H. Goodarzi, H. Lee, X. Liu, S. Tavazoie, and S. F. Tavazoie. HNRNPA2b1 is a mediator of
m6a-dependent nuclear RNA processing events. Cell, 162(6):1299–1308, Sept. 2015.

[3] C. R. Alarcón, H. Lee, H. Goodarzi, N. Halberg, and S. F. Tavazoie. N6-methyladenosine marks primary
microRNAs for processing. Nature, 519(7544):482–485, Mar. 2015.

[4] A. G. Baydin and B. A. Pearlmutter. Automatic differentiation of algorithms for machine learning. CoRR,
abs/1404.7456, 2014.

[5] T. Chen, Y.-J. Hao, Y. Zhang, M.-M. Li, M. Wang, W. Han, Y. Wu, Y. Lv, J. Hao, L. Wang, A. Li, Y. Yang,
K.-X. Jin, X. Zhao, Y. Li, X.-L. Ping, W.-Y. Lai, L.-G. Wu, G. Jiang, H.-L. Wang, L. Sang, X.-J. Wang,
Y.-G. Yang, and Q. Zhou. m6a RNA methylation is regulated by MicroRNAs and promotes reprogramming
to pluripotency. Cell Stem Cell, 16(3):338, Mar. 2015.

[6] H. Coker, G. Wei, and N. Brockdorff. m6a modification of non-coding RNA and the control of mammalian
gene expression. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1862(3):310–318, Mar.
2019.

[7] M. Frye, B. T. Harada, M. Behm, and C. He. Rna modifications modulate gene expression during development.
Science, 361(6409):1346–1349, 2018.

[8] D. R. Garalde, E. A. Snell, D. Jachimowicz, B. Sipos, J. H. Lloyd, M. Bruce, N. Pantic, T. Admassu, P. James,
A. Warland, M. Jordan, J. Ciccone, S. Serra, J. Keenan, S. Martin, L. McNeill, E. J. Wallace, L. Jayasinghe,
C. Wright, J. Blasco, S. Young, D. Brocklebank, S. Juul, J. Clarke, A. J. Heron, and D. J. Turner. Highly
parallel direct RNA sequencing on an array of nanopores. Nature Methods, 15(3):201–206, Jan. 2018.

[9] S. Geula, S. Moshitch-Moshkovitz, D. Dominissini, A. A. Mansour, N. Kol, M. Salmon-Divon, V. Hershkovitz,
E. Peer, N. Mor, Y. S. Manor, M. S. Ben-Haim, E. Eyal, S. Yunger, Y. Pinto, D. A. Jaitin, S. Viukov, Y. Rais,
V. Krupalnik, E. Chomsky, M. Zerbib, I. Maza, Y. Rechavi, R. Massarwa, S. Hanna, I. Amit, E. Y. Levanon,
N. Amariglio, N. Stern-Ginossar, N. Novershtern, G. Rechavi, and J. H. Hanna. m6a mRNA methylation
facilitates resolution of näıve pluripotency toward differentiation. Science, 347(6225):1002–1006, Jan. 2015.

[10] A. Graves. Sequence transduction with recurrent neural networks. CoRR, abs/1211.3711, 2012.

[11] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor,
S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. Fernández del
Ŕıo, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant. Array programming with NumPy. Nature, 585:357–362, 2020.

[12] R. Hecht-Nielsen. Theory of the backpropagation neural network - based on “nonindent” by robert hecht-
nielsen, which appeared in proceedings of the international joint conference on neural networks 1, 593–611,
june 1989. © 1989 IEEE. pages 65–93, 1992.

[13] S. Hochreiter. The vanishing gradient problem during learning recurrent neural nets and problem solutions.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6:107–116, 04 1998.

[14] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, Nov. 1997.

[15] N. Jonkhout, J. Tran, M. A. Smith, N. Schonrock, J. S. Mattick, and E. M. Novoa. The RNA modification
landscape in human disease. RNA, 23(12):1754–1769, Aug. 2017.

[16] Q. Koziol and D. Robinson. Hdf5, 2018.

[17] A. H. Laszlo, I. M. Derrington, H. Brinkerhoff, K. W. Langford, I. C. Nova, J. M. Samson, J. J. Bartlett,
M. Pavlenok, and J. H. Gundlach. Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine
with nanopore MspA. Proceedings of the National Academy of Sciences, 110(47):18904–18909, Oct. 2013.

[18] M. Lee, B. Kim, and V. Kim. Emerging roles of rna modification: m6a and u-tail. Cell, 158(5):980–987, 2014.

IV

Bibliography

[19] B. Linder, A. V. Grozhik, A. O. Olarerin-George, C. Meydan, C. E. Mason, and S. R. Jaffrey. Single-nucleotide-
resolution mapping of m6a and m6am throughout the transcriptome. Nature Methods, 12(8):767–772, June
2015.

[20] H. Liu, O. Begik, M. C. Lucas, J. M. Ramirez, C. E. Mason, D. Wiener, S. Schwartz, J. S. Mattick, M. A.
Smith, and E. M. Novoa. Accurate detection of m6a RNA modifications in native RNA sequences. Nature
Communications, 10(1), Sept. 2019.

[21] Q. Liu, L. Fang, G. Yu, D. Wang, C.-L. Xiao, and K. Wang. Detection of DNA base modifications by deep
recurrent neural network on oxford nanopore sequencing data. Nature Communications, 10(1), June 2019.

[22] D. A. Lorenz, S. Sathe, J. M. Einstein, and G. W. Yeo. Direct RNA sequencing enables m6a detection in
endogenous transcript isoforms at base-specific resolution. RNA, 26(1):19–28, Oct. 2019.

[23] S. Mannor, D. Peleg, and R. Rubinstein. The cross entropy method for classification. In Proceedings of the
22nd international conference on Machine learning - ICML '05. ACM Press, 2005.

[24] K. D. Meyer. DART-seq: an antibody-free method for global m6a detection. Nature Methods, 16(12):1275–
1280, Sept. 2019.

[25] K. D. Meyer, D. P. Patil, J. Zhou, A. Zinoviev, M. A. Skabkin, O. Elemento, T. V. Pestova, S.-B. Qian, and
S. R. Jaffrey. 5′ UTR m6a promotes cap-independent translation. Cell, 163(4):999–1010, Nov. 2015.

[26] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[27] P. N. Pratanwanich, F. Yao, Y. Chen, C. W. Q. Koh, Y. K. Wan, C. Hendra, P. Poon, Y. T. Goh, P. M. L.
Yap, J. Y. Chooi, W. J. Chng, S. B. Ng, A. Thiery, W. S. S. Goh, and J. Göke. Identification of differential
RNA modifications from nanopore direct RNA sequencing with xPore. Nature Biotechnology, July 2021.

[28] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsupervised
multitask learners. 2019.

[29] F. J. Rang, W. P. Kloosterman, and J. de Ridder. From squiggle to basepair: computational approaches for
improving nanopore sequencing read accuracy. Genome Biology, 19(1), July 2018.

[30] Y. Saletore, K. Meyer, J. Korlach, I. D. Vilfan, S. Jaffrey, and C. E. Mason. The birth of the epitranscriptome:
deciphering the function of RNA modifications. Genome Biology, 13(10):175, 2012.

[31] J. Schreiber, Z. L. Wescoe, R. Abu-Shumays, J. T. Vivian, B. Baatar, K. Karplus, and M. Akeson. Error rates
for nanopore discrimination among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA
strands. Proceedings of the National Academy of Sciences, 110(47):18910–18915, Oct. 2013.

[32] J. T. Simpson, R. Workman, P. C. Zuzarte, M. David, L. J. Dursi, and W. Timp. Detecting DNA methylation
using the oxford nanopore technologies MinION sequencer. Apr. 2016.

[33] J. Spangenberg. Project: Modbuster thesis. 2021.

[34] TensorFlow Developers. Tensorflow, 2021.

[35] G. Van Rossum and F. L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA, 2009.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin.
Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017.

[37] L. P. Vu, B. F. Pickering, Y. Cheng, S. Zaccara, D. Nguyen, G. Minuesa, T. Chou, A. Chow, Y. Saletore,
M. MacKay, J. Schulman, C. Famulare, M. Patel, V. M. Klimek, F. E. Garrett-Bakelman, A. Melnick, M. Car-
roll, C. E. Mason, S. R. Jaffrey, and M. G. Kharas. The n6-methyladenosine (m6a)-forming enzyme METTL3
controls myeloid differentiation of normal hematopoietic and leukemia cells. Nature Medicine, 23(11):1369–
1376, Sept. 2017.

[38] X. Wang, Z. Lu, A. Gomez, G. C. Hon, Y. Yue, D. Han, Y. Fu, M. Parisien, Q. Dai, G. Jia, B. Ren, T. Pan,
and C. He. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 505(7481):117–120,
Nov. 2013.

V

Bibliography

[39] Y. Wang, Y. Li, J. I. Toth, M. D. Petroski, Z. Zhang, and J. C. Zhao. N6-methyladenosine modification
destabilizes developmental regulators in embryonic stem cells. Nature Cell Biology, 16(2):191–198, Jan. 2014.

[40] R. R. Wick, L. M. Judd, and K. E. Holt. Performance of neural network basecalling tools for oxford nanopore
sequencing. Genome Biology, 20(1), June 2019.

[41] K. Xu, Y. Yang, G.-H. Feng, B.-F. Sun, J.-Q. Chen, Y.-F. Li, Y.-S. Chen, X.-X. Zhang, C.-X. Wang, L.-Y.
Jiang, C. Liu, Z.-Y. Zhang, X.-J. Wang, Q. Zhou, Y.-G. Yang, and W. Li. Mettl3-mediated m6a regulates
spermatogonial differentiation and meiosis initiation. Cell Research, 27(9):1100–1114, Aug. 2017.

[42] X. Yang, Y. Yang, B.-F. Sun, Y.-S. Chen, J.-W. Xu, W.-Y. Lai, A. Li, X. Wang, D. P. Bhattarai, W. Xiao,
H.-Y. Sun, Q. Zhu, H.-L. Ma, S. Adhikari, M. Sun, Y.-J. Hao, B. Zhang, C.-M. Huang, N. Huang, G.-B. Jiang,
Y.-L. Zhao, H.-L. Wang, Y.-P. Sun, and Y.-G. Yang. 5-methylcytosine promotes mRNA export — NSUN2 as
the methyltransferase and ALYREF as an m5c reader. Cell Research, 27(5):606–625, Apr. 2017.

[43] S. Zaccara and S. R. Jaffrey. A unified model for the function of YTHDF proteins in regulating m6a-modified
mRNA. Cell, 181(7):1582–1595.e18, June 2020.

[44] X. Zhao, Y. Yang, B.-F. Sun, Y. Shi, X. Yang, W. Xiao, Y.-J. Hao, X.-L. Ping, Y.-S. Chen, W.-J. Wang, K.-X.
Jin, X. Wang, C.-M. Huang, Y. Fu, X.-M. Ge, S.-H. Song, H. S. Jeong, H. Yanagisawa, Y. Niu, G.-F. Jia,
W. Wu, W.-M. Tong, A. Okamoto, C. He, J. M. R. Danielsen, X.-J. Wang, and Y.-G. Yang. FTO-dependent
demethylation of n6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Research,
24(12):1403–1419, Nov. 2014.

[45] G. Zheng, J. A. Dahl, Y. Niu, P. Fedorcsak, C.-M. Huang, C. J. Li, C. B. V̊agbø, Y. Shi, W.-L. Wang, S.-H.
Song, Z. Lu, R. P. Bosmans, Q. Dai, Y.-J. Hao, X. Yang, W.-M. Zhao, W.-M. Tong, X.-J. Wang, F. Bogdan,
K. Furu, Y. Fu, G. Jia, X. Zhao, J. Liu, H. E. Krokan, A. Klungland, Y.-G. Yang, and C. He. ALKBH5 is a
mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Molecular Cell, 49(1):18–29,
Jan. 2013.

[46] K. I. Zhou and T. Pan. Structures of the m 6 a methyltransferase complex: Two subunits with distinct but
coordinated roles. Molecular Cell, 63(2):183–185, July 2016.

VI

Acknowledgement

Danksagung

Ich möchte mich sehr herzlich bei meinen Betreuern Sebastian Krautwurst, Christian

Höner zu Siederdissen und Manja Marz bedanken, die mir bei der Ideenfindung zur

Lösung von Problemen intensiv zur Seite standen und sich bei Rückfragen gerne viel

Zeit genommen haben diese zu beantworten und mir hoffentlich auch im weiteren

Verlauf meiner akademischen Laufbahn zur Seite stehen werden.

Jakob Taulin und Alexander Henoch möchte ich besonders danken, da sie mir auch

während des COVID-19 Lockdowns und bei geistigen Flauten ein Lächeln auf das

Gesicht zauber konnten.

Ich möchte mich bei der gesamten RNA Jena Bioinformatics & High-Throughput

Analysis Gruppe für die gemeinsame Zeit, das Mittagessen und besonders bei Muriel

für ihre Schätzfragen des Tages bedanken.

Für die konstruktive Kritik zu meiner Arbeit möchte ich Sandra Triebel, Alexander

Henoch, Jakob Taulin, Sebastian Krautwurst und Christian Höner zu Siederdissen

herzlich danken.

Und ein Dankeschön an Sie, lieber Leser, dass Sie meine Arbeit gelesen haben!

VII

Declaration of authorship

Eigenständigkeitserklärung

Ich erkläre, dass ich die vorliegende Arbeit selbstständig und nur unter Verwendung

der angegebenen Quellen und Hilfsmittel angefertigt habe. Ich habe keine Einwände

die vorliegende Masterarbeit für die öffentliche Benutzung im Universitätsarchiv zur

Verfügung zu stellen.

Declaration of authorship

I declare that I have prepared this master thesis independently and only using the

referenced sources and resources. I have no objection to making this master thesis

available for public use in the university archive.

Jena,

...

VIII

	1 Introduction
	1.1 Oxford Nanopore Technologies and modifications
	1.2 Existing methods
	1.3 Deep neural networks
	1.4 Data collection

	2 Materials
	2.1 Resquiggler and segmentation
	2.1.1 Taiyaki
	2.1.2 Nanopolish eventalign

	2.2 Model input format
	2.3 HDF5 format

	3 Methods
	3.1 Signal interpolation
	3.2 Python scripts
	3.3 Model architecture
	3.3.1 Transformer layer stacks
	3.3.2 Linear layer stacks
	3.3.3 The network structure
	3.3.4 Training strategy

	3.4 Sample processing

	4 Results
	4.1 The segmentation is the foundation
	4.2 Model performances
	4.2.1 High accuracy in training
	4.2.2 The models yield promising evaluation results

	5 Discussion
	5.1 The data problem
	5.2 Preprocessing of the signal
	5.3 More features for the prediction
	5.4 More exploration of the data

	6 Conclusion
	 Appendix
	 Bibliography

